

Mark Scheme (Results)

October 2021

Pearson Edexcel International A Level In Statistics S3 (WST03) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2021

Question Paper Log Number P71287A

Publications Code WST03_01_2110_MS

All the material in this publication is copyright

© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{\text{ will be used for correct ft}}$
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Ignore wrong working or incorrect statements following a correct answer.

Special notes for marking Statistics exams (for AAs only)

- If a method leads to "probabilities" which are greater than 1 or less than 0 then M0 should be awarded unless the mark scheme specifies otherwise.
- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.
- If a candidate is "hedging their bets" e.g. give Attempt 1...Attempt 2...etc then please send to review.

Question Number		Scheme							
1.	H ₀ : μ =	H_0 : $\mu = 30$ H_1 : $\mu < 30$							
	$z = \frac{29}{2}$	$\frac{2.5}{\sqrt{80}}$	M1						
	z=-1	7888 awrt–1.79	A1						
	-1.7888 < -1.6449								
	Reject H ₀ or significant result or in the critical region								
	There is evidence to support the manager's claim.								
	Notes B1 Both hypotheses correct in terms of μ M1 for attempting test statistic, allow \pm , Condone $\sqrt{\frac{2.5}{80}}$ A1 awrt -1.79 allow $ z = 1.7888$ Allow p value of 0.0367 or awrt 0.0368 or CR \leq 29.5								
	B1 $ CV = 1.6449$ or better (Ignore any comparisons) Allow $CR \le 29.54$ SC If p value of 0.0367 or awrt 0.0368 award B1 if 2^{nd} A1 is awarded								
	A1	For correct conclusion. Allow the manager's claim in words if it includes screws and less	ss (oe)						

Question Number			Sche	eme					Marks			
2	H ₀ : Potassium has no effect on the quality of apple H ₁ : Potassium has an effect on the quality of apple											
	Grade Expected values	d 9.6	<i>B</i> 67.2	C 124.8	D 24.0	E 14.4			M1A1			
		$\frac{(O-E)^2}{E} = \frac{(9-E)^2}{E}$ $\frac{O^2}{E} - N = \frac{9^2}{19.6}$,			- or			M1			
	= 10.	= 10.657 awrt 10										
	Degrees of freedom = 4 $\chi^{2}_{4.0.05} = 9.488$											
	[Reject H ₀] Data suggests that potassium may affect the distribution of the grades of apples or there is evidence that Andy's belief is incorrect											
	Notes											
	Notes B1 Both hypotheses in context. May use other wording eg The grading of apples remains											
	M1	A correct method to calculate expected values eg 0.04×240										
	A1	At least 3 expected values correct										
	M1 A correct method using their expected values to calculate χ^2 At least one correct, ft expected values with an intention to add											
	A1	awrt 10.7	s with an	intention to	o auu							
	B 1	Degrees of freedom = 4 (may by be implied by 9.488)										
	B1ft	9.488 ft their DoF. If no DoF stated then this must be correct for their working.										
	A1ft	ft their χ^2 value way round do						f no hypotheses or hypot 'belief' oe	heses wrong			

Question Number				Sch	eme							Marl	ks
3(a)	jam	1	В	C	D	E	F	G	Н	I			
<i>3(a)</i>	Price		2	4	5	3	6	7	8	9	-	M1	
	Taste		2	8	9	4	3	6	5	7	<u>-</u> 	1,11	
	$\sum d^2 = [$	[0+0+]	16+16	+1+9+	1+9+	4[=56]		•	•	1		M1A1	
	$r_s = 1 - \frac{60}{90}$	$(56) \over (80)$; = $\frac{8}{15}$	$\frac{1}{5} = 0.533$	33							awrt 0.533	dM1A	
(1.)	II - () II .	0									D1	(5)
(b)	$H_0: \rho = 0$, $H_1: \rho \neq 0$ Critical Value = 0.7										B1		
	Critical Value = 0.7 There is no evidence of a relationship between <u>price</u> and <u>taste</u> of strawberry jam										B1 B1ft		
	There is in	o eviden	ce oi a i	ciationsi	np betv	veen <u>pri</u>	<u>ce</u> and <u>i</u>	asie or	suawbe	iiy jaiii		БП	(3)
(c)	$r = \frac{1}{\sqrt{2.0}}$	16.494 455×24	3.5556									M1	(2)
	= 0.7389										awrt 0.739	A1	
													(2)
(d)	$H_0: \rho = 0$	$0, H_1: \rho$	<i>y</i> > 0									B1	
	CV = 0.5822								B1				
	There is evidence of a <u>positive correlation</u> between <u>price</u> and <u>taste</u> of strawberry jam									B1ft			
(2)	Cm common	la mamle											(3)
(e)	Spearman's rank as it is unlikely that a joint normal distribution applies.								B1				
	or the marks are a judgement or the marks are not a meaningful scale.												
		•	,										(1)
	2.54	ı					Notes					Tota	ıl 14
(a)	M1	•		c each ja		•			•				
	M1 For an attempt at d^2 row for their ranks (may be implied by $\sum d^2 = 56$)												
	$\mathbf{A1} \qquad \sum d^2 = 56$												
	dM1	M1 Dependent on the previous M being awarded. Using $1 - \frac{6\sum d^2}{9(80)}$											
	A1	$\frac{8}{15}$ or a	awrt 0.5	33									
(b)	B1 Both hypotheses stated in terms of ρ . Must be two-tail.												
()	B1 0.7 for CV. Allow 0.6 if a one tail test is used												
	B1ft For a correct contextualised comment which has price and taste												
		Follow	through	their r_s	with th	eir 0.7 (provide	ed their	$ r_s < 1$	1)			
(c)	M1	Correct		l used									
(4)	A1	awrt 0.7		na atata 1	in ta	a of a	M1204 1	2 0m2 t-	:1 IED/	0.000	nd in mant (1-1) 41.	n alla	044.
(d)	B1		-	es stated ρ that		-			11. II B(awarde	ed in part (b) the	en allow	any
	B 1).6664 if			-	(-)					
	B1ft	Correct	conclus	sion in co	ontext v	vhich ha	s positi			•	y be implied by neir 0.5822 and		t
(e)	B1	_	_							-	is ranked' as a		

$\frac{57 \times 260}{595}$ of $\frac{56}{66}$ and $\frac{104}{102}$ Observed $\frac{162}{98}$ $\frac{162}{102}$ $\frac{162}{102}$ $\frac{162}{102}$ $\frac{162}{102}$ $\frac{162}{102}$ $\frac{162}{102}$ $\frac{162}{102}$	r 238×260 r 238×260 r 595 Expected "156" "104"	$\frac{(O-E)^2}{E}$ $\frac{(162 - "156")^2}{"156"} = \frac{3}{13} = 0.2307$ $\frac{(98 - "104")^2}{"104"} = \frac{9}{26} = 0.3461$	M1 M1 A1 (3) M1 A1 (2)					
mple rando 57×260 of 595 of 66 and 104 of 66 and 104 of 66 of 66 and 104 of 66	m sample of 238×260	$\frac{(O-E)^2}{E}$ $\frac{(162 - "156")^2}{"156"} = \frac{3}{13} = 0.2307$ $\frac{(98 - "104")^2}{"104"} = \frac{9}{26} = 0.3461$	M1 (3) M1 (2) M1					
$\frac{57 \times 260}{595} \text{ of } \frac{57 \times 260}{595} \text{ of } \frac{5}{3} = \frac{1}{3} = \frac{1}$	Expected "156" "104" + "0.2307"	$\frac{(O-E)^2}{E}$ $\frac{(162 - "156")^2}{"156"} = \frac{3}{13} = 0.2307$ $\frac{(98 - "104")^2}{"104"} = \frac{9}{26} = 0.3461$	(3) M1 A1 (2)					
$ \begin{array}{r} 595 \\ 66 \text{ and } 104 \\ \hline 0bserved \\ 162 \\ 98 \\ 2 = 4.657 \\ = 5.234 $	Expected "156" "104" + "0.2307"	$\frac{(O-E)^2}{E}$ $\frac{(162 - "156")^2}{"156"} = \frac{3}{13} = 0.2307$ $\frac{(98 - "104")^2}{"104"} = \frac{9}{26} = 0.3461$	M1 (2) M1					
$ \begin{array}{r} 595 \\ 66 \text{ and } 104 \\ \hline 0bserved \\ 162 \\ 98 \\ 2 = 4.657 \\ = 5.234 $	Expected "156" "104" + "0.2307"	$\frac{(O-E)^2}{E}$ $\frac{(162 - "156")^2}{"156"} = \frac{3}{13} = 0.2307$ $\frac{(98 - "104")^2}{"104"} = \frac{9}{26} = 0.3461$	A1 (2) M1					
Dbserved	Expected "156" "104" + "0.2307"		M1					
	"156" "104" + "0.2307" -		M1					
	"156" "104" + "0.2307" -							
98 $= 4.657$ $= 5.234$	"104" + "0.2307" -							
$a^2 = 4.657 - 6.234$	+"0.2307" -							
= 5.234								
			M1					
=(2-1)(3)	= 5.234 awrt 5.23							
v = (2-1)(3-1) = 2								
$\chi_2^2(0.05) = 5.991 \implies \text{CR: } \chi^2 > 5.991$								
There is no evidence to suggest that there is an association between <u>age</u> and <u>listening</u> to <i>LSB</i>								
		Notes	Total 11					
 For suitable labelling of all four areas. E.g. for area A: 1 – 41 or 0 - 40 For use of random numbers to select houses in each area. For 20 A, 80B, 60C and 40 D (dependent on 2nd M1 only) NB A simple random sample of 20 A, 80B, 60C and 40 D scores M0M1A1. Allow M1: allocate random numbers to each house M1: arrange the numbers in order A1: select the 1st 20 for area A, 80 for area B, 60 for area C and 40 for area D SC If M0M0 scored then award B1 for 20 area A, 80 area B, 60 area C and 40 area D A correct answer for both values 								
A1 B1 B1ft dA1 awrt 5.23 5.991 or better ft their DoF A correct contextual conclusion, which has the words age and listening dependent o marks being awarded.								
N N N B	NI SC A1 A2 A1 A2 A1 A2 A1 A2 A1 A1	NB A simple r Allow M1 M1 A1 SC If M0M0 s A correct meth Correct answe M1 A correct meth M1 Adding the two awrt 5.23 B1 2 5.991 or better A correct content marks being av	NB A simple random sample of 20 A, 80B, 60C and 40 D scores M0M1A1. Allow M1: allocate random numbers to each house M1: arrange the numbers in order A1: select the 1st 20 for area A, 80 for area B, 60 for area C and 40 for a SC If M0M0 scored then award B1 for 20 area A, 80 area B, 60 area C and 40 area I A correct method for finding one expected value. Correct answer for both values A1					

Question Number		Scheme	Marks				
5(a)	2.977 ± 2	$2.5758 \times \frac{0.015}{3}$	M1,B1				
	= (2.9641	, 2.9898) awrt (2.964, 2.990)	A1				
			(3)				
(b)	The CI do	pes not contain the stated weight.	B1 (1)				
(c)	2.995-1	$.96 \times \frac{0.015}{\sqrt{n}} < 2.991$	M1				
	$\sqrt{n} < \frac{1}{2.9}$	96×0.015 995 – 2.991	M1d				
	\sqrt{n} < aw	rt 7.35	A1				
	n = 54		Alcao				
		Notes	(4) Total 8				
(a) (b) (c)	M1 B1 A1 B1 M1	$2.977 \pm (z \text{ value}) \times \frac{0.015}{3}$ awrt 2.5758 awrt (2.964, 2.990 (condone 2.99)) cao this must be consistent with their confidence interval Setting up an inequality using z value > 1.5 Condone =					
	M1d Dep on previous M mark. Correct rearranging to get $\sqrt{n} <$ or $n <$ Condone = or > awrt 7.35 may be implied by awrt 54 54						

Question Number		Scheme	Marks				
6(a)	$\bar{h} = 65.4$		B1				
	$s^2 = \frac{214}{1}$	$\frac{4676 - 50 \times ("65.4")^2}{49}$	M1				
	=16.6	693 awrt 16.7	A1				
			(3)				
(b)	$H_0:\mu_{do} =$	$\mu_{ m do\ not}\ m H_1$: $\mu_{ m do}<\mu_{ m do\ not}$	B1				
		"65.4"-70.8					
	$z = \pm \frac{1}{\sqrt{100}}$	$\frac{"65.4"-70.8}{"16.693"} + \frac{29.6}{40}$	M1M1				
	$\sqrt{}$						
	$= \pm 5.2$		A1				
	CV 1.644		B1				
	Amala's belief is supported						
	_		(6)				
(c)		bles you to assume that (the sampling distribution of the sample mean of) resting is normally distributed for both groups	B1				
			(1)				
(d)		pulation/sample is independent or each male is independent of the other males.	B1				
	Assume the $\sigma_{do}^2 = s_{do}^2$ and $\sigma_{do \text{ not}}^2 = s_{do \text{ not}}^2$						
			(2)				
		Notes	Total 12				
(a)	B1	65.4 only					
	M1	Correct method to find s^2 using their \overline{h}					
	A1	awrt 16.7					
(b)	B 1	Both hypotheses correct - must be clear which is exercise and which is not					
	M1	For the denominator. Ft their 16.693					
	M1	Correct ft their 65.4 and 16.693					
	A1 awrt 5.21 allow $ z = 5.21$						
	B1 CV =1.6449 or better						
	ft their z value and CV if the hypotheses are the correct way round. Correct conclusion in context need belief. May be in words with heart and exercise e.g. resting heart rate is lower in men who exercise regularly						
(c)	B 1	For the idea both groups normally distributed					
(d)	B1	For identifying the need for the groups or males to be independent.					
	B1	Realising the $\sigma^2 = s^2$ Allow sample sizes big enough for CLT to hold					

Question Number		Scheme	Marks					
7(a)	$E(B_1 -$	$(B_2) = 0$	B1					
	$\operatorname{Var}(B_1 - B_2) = 0.006$							
	$P(B_1 - B_2 > 0.1) = 2P(B_1 - B_2 > 0.1)$							
		= $2 \times P\left(Z > \frac{0.1}{\sqrt{"0.006"}}\right) \left[= 2 \times P(Z > 1.2909)\right]$	M1					
		= 0.1967 awrt 0.197	A1					
(b)	$\overline{B} \sim N$	$\left(1.96, \frac{0.003}{n}\right)$	B1					
	$P(\overline{B} >$	$ \left(1.96, \frac{0.003}{n}\right) $ $ 2) = P\left(Z > \frac{2 - 1.96}{\sqrt{0.003/n}}\right) [< 0.01] $	M1					
	$\frac{2-1.96}{\sqrt{\frac{0.003}{n}}} > 2.3263$							
	n = 11		A1 (5)					
(c)	$\mu_M = 21.8 + 500 \times 1.96 [= 1001.8] ; \sigma_M^2 = 0.6 + 500 \times 0.003 [= 2.1]$							
		4T-3M	M1					
	$\mu_X = 4$	$\times 774 - 3 \times "1001.8" [= 90.6] ; \sigma_X^2 = 16 \times 1.8 + 9 \times "2.1" [= 47.7]$	M1; M1					
	P(4T -	$-3M > 100$ $= P\left(Z > \frac{100 - 90.6}{\sqrt{47.7}}\right) \left[= P(Z > 1.361)\right]$	M1					
		= 0.0869 (table) or 0.08675 (calc)	A1					
			(7) Total 17					
(a)	B1	For expected value being 0 written or used	10tai 17					
	B1	For 0.006 being written or used for Variance						
	M1	Realising they need to consider both						
	M1	Correct standardisation using their 0.1 and 0.006 If the expected value and/or standard not stated then they must be correct	ard deviation					
	A1	awrt 0.197						
(b)	B 1	The correct distribution written or used	_					
	M1 Correct standardisation. Allow using their distribution if stated but must contain \sqrt{n} for sd							
	B1 dM1	Using awrt 2.3263 Dep on previous M being awarded using a z value, $2 < z < 3$						
	A1	11						
(c)	M1	Correct method for finding the mean of M						
	M1 Correct method for finding the var of M Realising the need to find $4T - 3M$ or $4T - 3M - 100$ or $100 + 3M - 4T$							
	M1 Realising the need to find $4T - 3M$ or $4T - 3M - 100$ or $100 + 3M - 4T$ M1 Correct method for finding the mean of X (using $4T - 3M - 100 = -9.4$ or $100 + 3M$							
	M1 Correct method for finding the var of X							
	M1	Correct standardisation using their mean of <i>X</i> and their standard deviation of <i>X</i> If the stated then they must be correct	ese are not					
	A1	awrt 0.0869 or 0.0868						

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom